1. Let A, B, C be subsets of some ambient set U.
(a) Prove the distributivity law: $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$. Your proof may be a sequence of equivalences, but you have to justify each step.
(b) Deduce the identity $A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$ from the distributivity law in the following two ways: using complements and not using complements (directly applying distributivity).
2. For sets A, B, we call the set $A \triangle B:=(A-B) \cup(B-A)$ their symmetric difference. For sets A, B, C, prove the following (using any method you like):
(a) $A \triangle B=(A \cup B) \backslash(A \cap B)$.
(b) $A \triangle C \subseteq(A \triangle B) \cup(B \triangle C)$.
3. Use induction to prove that a set with n elements has 2^{n} subsets.
4. For sets x, y, we define the ordered pair $(x, y):=\{\{x\},\{x, y\}\}$.
(a) Prove that this satisfies the main property of ordered pairs, namely: for any sets $x_{0}, y_{0}, x_{1}, y_{1}$, if $\left(x_{0}, y_{0}\right)=\left(x_{1}, y_{1}\right)$ then $x_{0}=x_{1}$ and $y_{0}=y_{1}$.
(b) Deduce that if $(x, y)=(y, x)$ then $x=y$.
5. Let X be a set and let $A_{0}, A_{1} \subseteq X$. Define a binary relation E on X by setting

$$
x E y: \Longleftrightarrow \forall i \in\{0,1\}\left(x \in A_{i} \Leftrightarrow y \in A_{i}\right)
$$

for $x, y \in X$.
(a) Prove that E is an equivalence relation.
(b) List all E-classes.
6. Let \mathcal{Q} be a partition of a set X. Define a binary relation $R_{\mathcal{Q}}$ on X by:

$$
x R_{\mathcal{Q}} y: \Longleftrightarrow \exists P \in \mathcal{Q} \text { such that } x, y \in P,
$$

for $x, y \in X$.
(a) Prove that $R_{\mathcal{Q}}$ is an equivalence relation.
(b) Show that the $R_{\mathcal{Q}}$-classes are exactly the sets in \mathcal{Q}, more precisely, $X / R_{\mathcal{Q}}=\mathcal{Q}$.
7. Terminology. For a function $f: A \rightarrow B$ and $A_{0} \subseteq A$, let $\left.f\right|_{A_{0}}$ denote its restriction to A_{0}, namely, the function $\left.f\right|_{A_{0}}: A_{0} \rightarrow B$ defined by $\left.f\right|_{A_{0}}(a):=f(a)$ for each $a \in A_{0}$. When we say " f on A_{0} has some property", we mean that $\left.f\right|_{A_{0}}$ has that property.
Let $f: A \rightarrow B$ and $g: B \rightarrow C$.
(a) Prove that $g \circ f$ is injective if and only if f is injective and g is injective on $f(A)$ (i.e. $\left.g\right|_{f(A)}$ is injective).
(b) Give an example of f and g such that f is injective yet $g \circ f$ is not.
(c) Prove that $g \circ f$ is surjective if and only if g is surjective on $f(A)$ (i.e. $g(f(A))=C$).
(d) Give an example of f and g such that g is surjective yet $g \circ f$ is not.
8. Let $f: A \rightarrow B$ and $A_{0}, A_{1} \subseteq A, B_{0}, B_{1} \subseteq B$.
(a) Prove that f^{-1} respects unions, i.e. $f^{-1}\left(B_{0} \cup B_{1}\right)=f^{-1}\left(B_{0}\right) \cup f^{-1}\left(B_{1}\right)$.
(b) Prove that f^{-1} respects complements, i.e. $f^{-1}\left(B_{0}^{c}\right)=f^{-1}\left(B_{0}\right)^{c}$.
(c) Prove that f respects unions, i.e. $f\left(A_{0} \cup A_{1}\right)=f\left(A_{0}\right) \cup f\left(A_{1}\right)$.
(d) Show that $f\left(A_{0}^{c}\right) \subseteq f\left(A_{0}\right)^{c}$ and $f\left(A_{0}^{c}\right) \supseteq f\left(A_{0}\right)^{c}$ don't hold in general by constructing a counterexample to each.

