Math 432: Set Theory and Topology

Homework 1

Due: Jan 28 (Tue)

- 1. Let A, B, C be subsets of some ambient set U.
 - (a) Prove the distributivity law: $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$. Your proof may be a sequence of equivalences, but you have to justify each step.
 - (b) Deduce the identity $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ from the distributivity law in the following two ways: using complements and not using complements (directly applying distributivity).
- **2.** For sets A, B, we call the set $A \triangle B := (A B) \cup (B A)$ their symmetric difference. For sets A, B, C, prove the following (using any method you like):
 - (a) $A \bigtriangleup B = (A \cup B) \setminus (A \cap B).$
 - (b) $A \bigtriangleup C \subset (A \bigtriangleup B) \cup (B \bigtriangleup C)$.
- **3.** Use induction to prove that a set with n elements has 2^n subsets.
- 4. For sets x, y, we define the ordered pair $(x, y) := \{ \{x\}, \{x, y\} \}$.
 - (a) Prove that this satisfies the main property of ordered pairs, namely: for any sets x_0, y_0, x_1, y_1 , if $(x_0, y_0) = (x_1, y_1)$ then $x_0 = x_1$ and $y_0 = y_1$.
 - (b) Deduce that if (x, y) = (y, x) then x = y.
- **5.** Let X be a set and let $A_0, A_1 \subseteq X$. Define a binary relation E on X by setting $x E y :\iff \forall i \in \{0, 1\} \ (x \in A_i \Leftrightarrow y \in A_i).$

for $x, y \in X$.

- (a) Prove that E is an equivalence relation.
- (b) List all *E*-classes.

6. Let \mathcal{Q} be a partition of a set X. Define a binary relation $R_{\mathcal{Q}}$ on X by:

$$x R_{\mathcal{Q}} y : \iff \exists P \in \mathcal{Q} \text{ such that } x, y \in P,$$

for $x, y \in X$.

- (a) Prove that $R_{\mathcal{Q}}$ is an equivalence relation.
- (b) Show that the $R_{\mathcal{Q}}$ -classes are exactly the sets in \mathcal{Q} , more precisely, $X/R_{\mathcal{Q}} = \mathcal{Q}$.
- **7. Terminology.** For a function $f: A \to B$ and $A_0 \subseteq A$, let $f|_{A_0}$ denote its restriction to A_0 , namely, the function $f|_{A_0}: A_0 \to B$ defined by $f|_{A_0}(a) := f(a)$ for each $a \in A_0$. When we say "f on A_0 has some property", we mean that $f|_{A_0}$ has that property.

Let $f: A \to B$ and $g: B \to C$.

- (a) Prove that $g \circ f$ is injective if and only if f is injective and g is injective on f(A) (i.e. $g|_{f(A)}$ is injective).
- (b) Give an example of f and g such that f is injective yet $g \circ f$ is not.

- (c) Prove that $g \circ f$ is surjective if and only if g is surjective on f(A) (i.e. g(f(A)) = C).
- (d) Give an example of f and g such that g is surjective yet $g \circ f$ is not.
- 8. Let $f : A \to B$ and $A_0, A_1 \subseteq A, B_0, B_1 \subseteq B$.
 - (a) Prove that f^{-1} respects unions, i.e. $f^{-1}(B_0 \cup B_1) = f^{-1}(B_0) \cup f^{-1}(B_1)$.
 - (b) Prove that f^{-1} respects complements, i.e. $f^{-1}(B_0^c) = f^{-1}(B_0)^c$.
 - (c) Prove that f respects unions, i.e. $f(A_0 \cup A_1) = f(A_0) \cup f(A_1)$.
 - (d) Show that $f(A_0^c) \subseteq f(A_0)^c$ and $f(A_0^c) \supseteq f(A_0)^c$ don't hold in general by constructing a counterexample to each.